- Inner products
- Definition
Defiition 1 (Inner product). A function $\langle \cdot , \cdot \rangle$ : $\mathbb{R}^n \times \mathbb{R}^n → \mathbb{R}$ is an inner product if- $\langle x , x \rangle \geq 0$, $\langle x , x \rangle = 0 \Leftrightarrow x = 0$ (positivity)
- $\langle x , y \rangle = \langle y , x \rangle$ (symmetry)
- $\langle x + y , z \rangle = \langle x , z \rangle + \langle y , z \rangle$ (additivity)
- $\langle rx , y \rangle = r \langle x , y \rangle$ for all $r \in \mathbb{R}$ (homogeneity)
- Examples
- The standard inner product is $$ \langle x , y \rangle = x^T y = \sum x_i y_i, ~~~ x, y \in \mathbb{R}^n $$
- The standard inner product between matrices is $$ \langle X , Y \rangle = Tr(X^T Y) = \sum_i \sum_j X_{ij} Y_{ij}, ~~~ X, Y \in \mathbb{R}^{m \times n} $$
- Properties of inner products
- Definition 2 (Orthogonality). We say that $x$ and $y$ are orthogonal if $$ \langle x , y \rangle = 0 $$
- Theorem 1 (Cauchy Schwarz). For $x, y ∈ \mathbb{R}^n$, $$ | \langle x , y \rangle | \leq \| x \| ~ \| y \|, $$ where $ \| x \| := \sqrt{\langle x , x \rangle}$.
- Definition
- Norms
- Definition
Definition 3 (Norm). A function $f : \mathbb{R}^n → \mathbb{R}$ is a norm if- $f(x) \geq 0$, $f(x) = 0 \Leftrightarrow x = 0$ (positivity)
- $f(\alpha x) = |\alpha| f(x)$ for all $\alpha \in \mathbb{R}$ (homogeneity)
- $f(x + y) \leq f(x) + f(y)$ (triangle inequality)
- Examples
- The 2-norm : $ \| x \| = \sqrt{\sum_i x_i^2} $
- The 1-norm : $ \| x \|_1 = \sum_i |x_i| $
- The inf-norm : $ \| x \|_\infty = max_i |x_i| $
- The p-norm : $ \| x \|_p = (\sum_i |x_i|^p )^{1 / p}, p \geq 1 $
- Properties of norms
- Lemma 1. Take any inner product $\langle \cdot , \cdot \rangle$ and define $f(x) = \sqrt{\langle x, x \rangle}$. Then $f$ is a norm.
- Definition
- Norms on Spaces of random variables
- $L^p$ norm : $ \| X \|_{L^p} = (E |X|^p)^{1/p}, ~~~ p \in (0, \infty) $
$L^p$ space : $\{ X : \| X \|_{L^p} < \infty \}$ - $L^\infty$ norm : $ \| X \|_{L^\infty} = \text{ess sup }|X| $
- $L^p$ norm : $ \| X \|_{L^p} = (E |X|^p)^{1/p}, ~~~ p \in (0, \infty) $
'Stat > Junk' 카테고리의 다른 글
Clean (0) | 2023.02.20 |
---|---|
Big O, little o, Big Op, little op (0) | 2023.02.20 |
Inequalities (0) | 2023.02.17 |
Contraction mapping theorem (0) | 2023.02.11 |
Orlicz norm (0) | 2023.01.30 |