- Definition
- Given two metric spaces $(X, d_X)$ and $(Y, d_Y)$, where $d_X$ denotes the metric on the set $X$ and $d_Y$ is the metric on set $Y$, a function $f : X → Y$ is called Lipschitz continuous if there exists a real constant $K ≥ 0$ such that, for all $x_1$ and $x_2$ in $X$, $$ d_Y(f(x_1), f(x_2)) \leq K \cdot d_X(x_1, x_2).$$
- In particular, a real-valued function $f : \mathbb{R} → \mathbb{R}$ is called Lipschitz continuous if there exists a positive real constant $K$ such that, for all real $x_1$ and $x_2$, $$ |f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2|. $$
'Stat > Junk' 카테고리의 다른 글
Inequalities (0) | 2023.02.17 |
---|---|
Contraction mapping theorem (0) | 2023.02.11 |
Orlicz norm (0) | 2023.01.30 |
Riesz representation theorem (0) | 2023.01.30 |
Covering number (0) | 2023.01.29 |