- Radon-Nikodym theorem
Let $\mu$ and $\nu$ be $\sigma-$finite measures on some measurable space $(X, \mathcal{A})$. Then there exists a measurable function $$ f = \frac{d\nu}{d\mu} $$ if and only if $\nu$ is absolutely continuous with respect to $\mu$. This function $f$ is called the Radon–Nikodym derivative.
'Stat > Junk' 카테고리의 다른 글
Reproducing kernel Hilbert space (1) | 2024.06.04 |
---|---|
Integrals (0) | 2023.03.14 |
Dictionary of Statistics (0) | 2023.03.02 |
Sub-Gaussian (0) | 2023.03.02 |
Quasi-likelihood (0) | 2023.02.28 |